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Abstract. Distinguishing the manifestations of pulmonary nodules poses a significant
challenge in the medical field, demanding the expertise of experienced radiologists. This
complexity results in the high cost and inadequacy of sample labeling. In response, this
study introduces a reinforcement learning approach, denoted as TriCaps-RL, for the clas-
sification of pulmonary nodules based on CT signs. This approach initially employs the
Q-value loss to train a single CapsNet. When the performance of the CapsNet plateaus
and further enhancement becomes challenging, the loss function is progressively replaced
by a triplet metric to augment performance. Consequently, a more nuanced differentia-
tion among various types of pulmonary nodules is achieved.

The proposed method can improve its performance through interactions with radiolo-
gists during their CT image reading process, thereby mitigating the shortage of radiolo-
gists and addressing the time-consuming issue of training sample labeling in medical im-
age research. This paper delves into the fine-grained classification of pulmonary nodules
using deep reinforcement learning based on CT imaging signs. In comparison to previous
studies that primarily concentrate on the benign/malignant classification of lung nodules,
this fine-grained classification of nodules founded on CT imaging signs proves to be more
valuable for medical practitioners in making accurate diagnostic decisions.
Keywords: CT image, lung cancer, pulmonary nodule, CT imaging sign, reinforcement
learning

1. Introduction. In recent years, despite the considerable achievements of artificial in-
telligence algorithms in numerous research domains [1], a significant scope for expansion
still exists in the field of medical image analysis [2, 3]. The classification of pulmonary
nodules based on CT images serves as an illustrative example.The visual manifestations of
pulmonary nodules are complex and indistinguishable, which makes the labelling process
of training samples very difficult and requires experienced senior radiologists. However, a
significant scarcity of skilled radiologists exists on a global scale [4]. These reasons lead
to expensive and inadequate of labeled training samples.

Reinforcement learning (RL) is a paradigm of machine learning. Its performance can
be improved by a correct answer or reward from the environment indicating its good
decision. Its parameters are constantly modified to improve the performance by comparing
the difference between the periodic achievements and the expectations. In recent years,
researchers have paid more and more attention to reinforcement learning. In the field of
game and robot control, reinforcement learning has been very successful.

CapsNet is a convincing capsule network proposed by Sabour et al. [5], which uses
capsules to store local features of images and their transformed information, such as po-
sition and attitude [6]. CapsNet transmits and compresses information through a routing
protocol, which can save the information of the relationships between various components
of high-level features [7], can achieving knowledge replication across spaces. The features
learned by the CapsNet are transformation-equivalent, and robust to affine transforma-
tion. CapsNet considers the relative spatial relationship of objects in the image, which can
better summarize the perceived content. Therefore, it can better complete the network
training with less annotated data, higher recognition accuracy and stronger generalization
ability.

Triplet network [8] learns network parameters through feature representation distance
metric, which is known as triplet loss function. The purpose of triplet loss metric learning
is to reduce or limit the representation distance between samples in one class and increase
the distance between different classes through training. The triplet loss metric is suitable
for the situations with many categories in the training data set and few samples in each
category.
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In this paper, a method of lung nodules CT sign classification based on triplet Cap-
sNet is proposed, which is denoted TriCaps-RL (TriCapsNet Reinforcement Learning).
This method combines Capsule Networks (CapsNets) with reinforcement learning tech-
niques, aiming to achieve precise nodule classification and improve interaction between
radiologists and the automated diagnosis system. The TriCaps-RL method not only holds
great potential for enhancing the accuracy of nodule classification but also can offer op-
portunities for real-time collaboration with medical experts during the diagnosis process.
TriCapsNet improves performance by means of reinforcement learning, striving for in-
creased similarity among samples within the same categories and greater dissimilarity
between different categories. The agent of TriCaps-Net receives states (image blocks)
and feedback corresponding actions (label predictions) according to its learnt strategy,
in reinforcement learning process. The method calculates the gap between the rewards
and the expected values and updates the agent’s parameters according to the gap. In
this way, the performance of the method is gradually improved. The framework of the
TriCaps-RL method is shown in Figure 1. Firstly, TriCaps-RL uses a single CapsNet as
agent for preliminary learning, and then conducts further optimization using triplet Cap-
sNets metric strategy. Through triplet metric learning, the distances between the feature
representations of the anchor and the negative samples become larger, and the distances
between the anchor and the positive samples become smaller. Finally, the feature rep-
resentations will reach an appropriate relative distance corresponding to the categories.
Thus, different categories of samples can be differentiated more subtly. Now, let’s delve
into the learning process of the TriCaps-RL method.

Figure 1. Framework of the proposed TriCaps-RL method.

TriCaps-RL can improve its performance by comparing its actions with the diagnosis
result of radiologists, which can address the problem of highly expensive labor and time
costs for training sample labelling in the field of medical image research.
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2. Related works. The capsule network uses a new architecture that mimics the hu-
man visual system and incorporates CNN’s lack of information about relative position,
angle and other factors, so that it need less training data and achieve enhanced general-
ization capability from different perspective [9]. Some scholars have tried CapsNet in the
classification of pulmonary nodules.

Mobiny and Nguyen [10] tried to use CapsNet instead of Convolutional Neural Net-
work(CNN) to diagnose pulmonary nodules. The experimental results showed that Cap-
sNet is better than CNN when the number of samples was very large. This advantage
was even more obvious when the train samples were small. To improve the efficiency
of computation, the authors also changed the original image reconstruction method of
CapsNet to reduce the reconstruction error of the network and improve the accuracy
of classification. Jiménez-Sánchez et al. [11] conducted an experiment to evaluation the
performance of CapsNet and CNN on a medical image data set. The results show that
the performance of CapsNet was the same or better than CNN, even with less data for
training. Moreover, CapsNet was more robust to the unbalanced distribution of classes.
Iesmanta and Alzbutas [12] proposed a deep learning method with convolutional Cap-
sNet to classify images of four kinds of breast tissue biopsies stained with hematoxylin
and eosin. In this method, he used a 5-layer convolutional neural network to extract the
basic information of the images, then the final images were classified using CapsNet, and
good results were obtained. Silva et al. [13] used a set of 3D geometric features com-
bined with a reinforcement learning method to classify benign and malignant pulmonary
nodules. The authors selected 36 nodules, including 29 benign and 7 malignant tumor
samples, and then experimented with manually extracted sphericity index, convexity in-
dex, curvature index, and surface features of the candidate regions. The accuracy of the
algorithm was 81%. Ali et al. [14] proposed a lung nodule detection algorithm based on
deep reinforcement learning inspired by the AlphaGo method. The agent used a CNN
network. The algorithm took the original CT images as input, regarded it as the state set,
and output the category attribution of the existence nodule. The authors trained their
models on LIDC-IDRI (Lung Image Database Consortium and Image Database Resource
Initiative) [15] database and tested them. The overall accuracy was 64.4% (sensitivity
58.9%, specificity 55.3%, PPV 54.2%, and NPV 60%). Reinforcement learning can rely
on the constructed reward feedback mechanism for performance improvement without
labeling data, so it is applied in many fields [16]. There are also some attempts in the
research field of pulmonary nodule diagnosis CAD.

Bhandary et al. [17] put forward a deep learning (DL) framework named Modified
AlexNet (MAN) to examine pneumonia and cancer in the lung. Chaunzwa et al. [18]
trained and validated convolutional neural networks on a dataset comprising adenocarci-
noma (ADC) and Squamous Cell Carcinoma (SCC) nodule CT images of 311 patients.
Khan et al. [19] proposed a novel design of contrast stretching based classical features
fusion process for localizing the of lungs cancer classification. Wang et al. [20] suggested
a novel residual neural network to identify several type of lung cancer via CT images.
None of these works were classified by signs.

3. TriCaps-RL method. TriCaps-RL can learn from the radiologist’s CT image di-
agnosing process. Its classification performance can be improved by simple interactions
with the physician. In this way, the current difficulty of training samples insufficiency
in medical image analysis can be alleviated. On the one hand, for a new CT image to
be analyzed, the algorithm selects a corresponding action (sign diagnose) and displays
it back to the image; on the other hand, the radiologist gives the correct labels to the
lesions which are wrong labelled by the algorithm. Afterward, the algorithm compares
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the agent’s classification outcomes with the radiologist’s labeling results and returns a
reward for each action based on the diagnostic consistency between the two. By compar-
ing the expected values and the method’s rewards, the agent improves its classification
performance by modifying its parameters step by step.

The input of TriCaps-RL includes three image blocks in the second learning stage,
which are anchor image (A), positive sample image (P ), and negative sample image (N).
The triplet loss function can be described by Euclidean distance function:

L(A,P,N) = max(∥f(A)− f(P )∥ 2 − ∥f(A)− f(N)∥ 2 + α, 0) (1)

Where α is the distance between positive and negative sample pairs and f(·) is the feature
expression function.

The triplet loss metric can capture the relative similarity between samples, making the
distance between the feature representations of the anchor and the positive images as small
as possible and the distance between the anchor and the negative sample images as large
as possible, through continuous learning. Finally, the gap between the two representations
satisfies at least one minimum interval, an α. This procedure can be interpreted in Figure
2. At the beginning, although the anchor sample and the positive sample belong to the
same category, not the same category as the negative one, the anchor image may be closer
to the negative sample in feature representation, as shown in Figure 2(a). After training
is completed, the distance between the anchor and positive representation becomes closer
than that between anchor and negative sample, as shown in Figure 2(b). In TriCaps-RL,

Figure 2. Schematic diagram of learning objectives of triplet loss function.

the structure of the agent based on the triplet CapsNet metric is shown in Figure 3.
These three capsule subnetworks in Figure 3 share the same structure. For any input
image patch, each CapsNet outputs a recognition confidence vector. CapsNet tries to
remember each detail of an input image, which will result in a huge computation. In
this algorithm, the input image is convolved three times before the capsules are used to
encapsulate the image’s features, to ignore the general features in low-level and reduce
the amount of computation in the training process. Figure 4 shows the structure of a
CapsNet in Figure 3. The ultimate learning objective of this algorithm is for the Tri-
CapsNet agent to accurately determine whether a given positive or negative sample, in
terms of its feature representation distance metric, belongs to the category of the anchor
for classification, as shown in Figure 2.

In the process of reinforcement learning, an image sample (si, yi) in the training sample

set D = (si, yi)
B
i=1 The feature embedding of si is expressed as CapsNet(si, ωc)∈R, where
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Figure 3. Structure of triplet CapsNet.

Figure 4. The network structure of single CapsNet.

ωc is the parameter of Capsnet. In this problem, the feature expression of si is also the Q
value of state si, and the label yi is as the corresponding action of the maximum reward
of si.
In the learning stage, three states should be selected each time to form a triplet

Ti(s
A
i , s

p
i , s

N
i ) and sent to the triplet capsule network. The elements selected to make

up Ti, whose category labels should meet the condition of yAi = yPi ̸= yNi . The utility
of the loss function of the triplet CapsNet is to pull samples of the same category to
the points near the manifold surface during learning and push the samples belonging to
different categories away from each other as much as possible. Then the loss function (1)
can be expressed as Formula (2):

Lj(d+, d−) = ||d+ − d− + α||22 (2)

Based on Formula (2), further regularization is carried out as Formula (3)and (4):

d+ =
e||CapsNet(sAi )−CapsNet(sPi )||2

e||CapsNet(sAi −CapsNet(spi )||2 + e||CapsNet(sAi )−CapsNet(sNi )||2
(3)
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d− =
e||CapsNet(sAi )−CapsNet(sNi )||2

e||CapsNet(sAi −CapsNet(spi )||2 + e||CapsNet(sAi )−CapsNet(sNi )||2
(4)

The loss function adopted by TriCaps-RL in the initial stage of reinforcement learning is
as Formula (5):

L(ω) = E[(rt+1 + γ ∗maxQ(st+1, αt+1, ω−)
2] (5)

where ω is the parameter of the capsule neural network to be optimized, r(t+ 1) + γ ∗
maxQ(s(t+ 1), a(t+ 1), ω−) is the target value. The function of the target Q value is as
shown in Equation (6):

Qtarget = rt+1 + γmaxar+1Q̃(st+1, at+1, ω−) (6)

In the equation, γ is a discount factor. The network is used to calculate the value of
the objective function, which is dynamic and changes with the update of the Q-value
prediction network.

In the initial stage of the learning, the update of the networks’ weight is calculated
by the loss function (as shown in Equation (5)) of the subnetwork (A) (shown in Figure
3). In the second learning stage, the triplet network metric function is used to further
improve the accuracy of action strategy.

Therefore, in the whole process, the TriCaps-RL method can be utilized for reinforce-
ment learning using the following loss function:

Lcompose =
1

B
ΣB

j=1((1− λ)Lj(ω) + λj(d+, d−))

=
1

B
ΣB

j=1((1− λ)||Qtarget − ΣM
i=1R(maxaQc(s

A
i,j, ai,j : ωc))||2

+ λ||d+ − d− + α||2)

(7)

Where B is the number of elements in each small batch randomly selected during
experience playback, R(·) is the reward function and λ is the weight adjustment factor,
which increases with the number of learning iterations.

Because of the introduction of the α boundary, the tri-CapsNet agent can perform
classification tasks more finely. However, it is difficult to train a triplet network from a
completely new initial state. Moreover, it is not easy to converge. In order to overcome
this difficulty, the reinforcement learning is conducted using a single CapsNet in the initial
phase, and adopt an adjustment factor λ to complete the transition procedure, as is shown
in (8):

λ =
1

1 + e−(0.005×(n−EPISODES))
(8)

The EPISODES in Equation (8) is a preset value obtained by experiments. The purpose
of this equation is that: when the number of iterations n is less than the EPISODES, the
algorithm uses the loss equation of subnetwork (A) in Figure 3 to improve the classification
performance, which can converge at a fast speed. When the number of iterations n
increases close to EPISODES, the accuracy of the algorithm will reach a bottleneck value
and it cannot be significantly improved. Thus, the loss function is gradually transited to
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the triplet loss after this anchor point, as shown in Equation (7). The triplet loss function
can boost the classification accuracy again from the performance plateau.

When the TriCaps-RL method is used for classification, the multiclass classification
task is transformed into two classification problems by feature similarity measurement.
By this means, different types of samples can be distinguished more finely. Suppose sA

is a sample to be classified, and sA belongs to one of the C possible categories. From the
labelled sample set, NP positive individuals(sP ) are randomly selected from each category,
for a total of NP×C. Each selected sP is integrated with a sample sA to compose a sample
pair (sA, sij), i ∈ [0, C − 1], which are fed to the triplet CapsNets respectively. Then, the

tri-CapsNet agent outputs the predicted category for sA, that sA has the largest average
feature similarity with the samples selected from it. The formula is as follows:

y∗ = arminyi
1

NP
ΣNP

j=1||CapsNet(sA)− CapsNet(sij)|||i ∈ [0, C − 1] (9)

Where y∗ is the final output category, sA is the sample to be tested, sij is the jth sample

from the ith base class in the test set, j ∈ [1, NP ].

4. Algorithmic procedures. Based on the above steps, the reinforcement learning pro-
cess of the TriCaps-RL method can be divided into three stages: 1) In stage A, the agent
receives a state (image block) from the environment, and selects the best action (identify
the category of image block) according to the learned strategy to execute, then the algo-
rithm calculates its Q value, stores the current state and action as a set along with the
selected reference samples temporarily, and receives the next state. This process is learned
iteratively until the end of an episode. Here, ”an episode” means that the agent performs
corresponding actions to all states obtained from the CT image by the sliding window
method. 2) In stage B, the algorithm calculates the corresponding rewards according to
the predefined rules. The reward in the temporary element group are updated and stored
in the memory pool. 3) In stage C, the experience playback stage is performed to update
the parameters of the Q network, and a new episode start.
The specific process of TriCaps-RL algorithm is as follows:

Algorithm: TriCaps-RL
Input: A CT slice image
Output:Trained TriCaps-RL

(1) Initialize the storage amount of replay memory pool D to N
(2) Initialize the temporary memory pool Dt with a capacity of M
(3) Initialize the reward value r
(4) Initialize α
(5) Initialize the parameter EPISODES of λ
(6) The parameter of the random initialization action value function Qc is ωc

(7) Iteration to meet the termination condition
(8) Initialize state s
(9) Iterates - until all image blocks on a CT are taken
(10) Randomly select an action at with probability ε
(11) Randomly select the reference base class state SP

t , s
P
i ∈ SP

t , i ∈ [1,M ]
(12) r ← 0
(13) Store < sAt , s

P
t , at, rt, st+1 > to Dt

(14) st ← st+1

(15) Iteration to traversal memory pool D
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(16) Take < sAt , s
P
t , at, rt, st+1 > from memory pool D

(17) Environment returns rt by comparing with the label marked by the doctor
(18) Store < sAt , s

P
t , at, rt, st+1 > in memory pool D

(19) If the block on a CT ends, then yj ← rj, otherwise yj ← Qtarget

(20) Randomly select a small batch of B sequences from memory pool D,< sAj , s
P
j , at, rt, st+

1 >
(21) For each < sAt , s

P
t , at, rt, st+1 >, randomly select annotation samples of different

classes from the existing sample library sPt
(22) Recalculate λ according to the number of iterations
(23) Use the loss function 1

B
ΣB

j=1((1− λ)Lj(ω) + λj(d+, d−)) =
1
B
ΣB

j=1((1− λ)||Qtarget −
ΣM

i=1R(maxaQc(s
A
i,j, ai,j : ωc))||2 + λ||d+ − d− + α||2) to train the network Qc

(24) Copy ωc of Qc network to the other two networks

In TriCaps-RL algorithm above, Qc and ωc mean the CapsNet’s Q value function and
its network parameters, respectively, the values of the other two networks’ parameters, in
the agent are the same as ωc in the agent.

5. Appling TriCaps-RL to pulmonary nodules classification. A 512 × 512-pixel
CT image to be diagnosed is used as an example to illustrate the TriCaps-RL based signs
classification process. Firstly, different image blocks are acquired one by one from this
CT image using a sliding window of K ×K(K < 512) pixels. The coordinate of the pixel
(xi, yi) on the upper-left corner of each image block are recorded simultaneously. All the
extracted image blocks from the CT image make up a state set S(st ∈ S). Here, S serves
as the environment E in which the agent interacts with. For any state st in E, the agent
of the algorithm will select an action at from the action space A according to its learned
strategy π to execute. In this problem, the action at means to identify the class cj of the
image block st. The blocks obtained from the CT image are performed actions by the
agent one by one, and the class labels identified by the actions will be displayed back to
the CT image according to the upper-left coordinate of the image block. By comparing
the original class label (If this algorithm is applied to a diagnosis process, the diagnosis
results of the radiologist are used as original class labels) of a st (image block) with
the identified result from the agent, the algorithm will produce a corresponding reward.
Depending on the rewards, the loss of Formula (6) will be performed, and the iterative
learning is carried out to improve the classification performance of TriCaps-RL.

For the problem to be analyzed in this paper, the diagnosis environment of the algorithm
is composed by the image blocks of a CT image and its labels, which is different from
the exist reinforcement learning application paradigms. In the paper by Mnih et al. [21],
different actions of the agent caused changes of the environment, and produced different
subsequent states. In this problem, the size of the sliding window and the sliding step
are invariant, so the number of the image blocks acquired from each CT is determined.
Therefore, the number of states in each episode is also determined during the reinforcement
learning process. The target Q-value is the sum of all the rewards, and it is also a fixed
number in this problem. Assuming that the number of states obtained from a CT slice
is M , and the reward for each correct action is r, the expected value of the objective
function Qtarget is:

Qtarget = M × r (10)
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Table 1. Signs selection scheme for experimentation

Characteristic visibility grade of selected samples Characteristic visibility grade of excluded samples

subtle - -
Internal Structure - -
Calcification sign = 4 <> 4
Sphericity - -
Margin - -
Lobulation sign >= 4 < 4
Spiculation sign >= 4 < 4
GGO sign <= 2 > 2
Malignancy >= 3 < 3

For a state, assuming that its class label identified by the agent is CA, and annotated by
the radiologists is CR, then:

r =

{
r, if |CA − CR| = 0,
0, if |CA − CR| = 0

(11)

The loss function is:

Lj(ωcj) = Es,a∼TriCapsnets(·)[(Qtarget − ΣM
i=1R(Qc(si, ai : ωcj)))

2] (12)

In Equation (12), a ∼ TriCapsnets(·) means the action a with the maximum Q value
chosen by the agent for the new state under its learned strategy. Qtarget represents the
value of the objective function of the j-th iteration. In this problem, it is a constant
calculated by Equation (10).

Having established the TriCaps-RL framework, we can now turn our attention to the
experimental results.

6. Experiment and result analysis.

6.1. Database. In the LIDC-IDRI database, the margin of each nodule was delineated
in detail by several radiologists, and the nodule was evaluated as benign or malignant in
grade. The LIDC-IDRI database contains 1018 cases and 20000 CT slice images. Each
image is 512 pixels in length and width. In this study, the four kinds of positive labeled
data in LIDC-IDRI are used as a baseline for the environment to evaluate the reward to
the agent’s actions in the TriCaps-RL algorithm.

The greater the degree of Lobulation sign, Spiculation sign, or GGO sign, the greater
the possibility of malignant nodules [22]. The majority of Calcification sign nodules are
benign, while the most of non-central calcification sign nodules are malignant [22]. Ac-
cording to the nodules’ visual characteristics and malignant degree ranked by radiologists,
nodules are usually malignant when the degree of its calcification sign is grade 4 (non-
central appearance), the Lobulation sign or Spiculation sign is above grade 4, and the
texture sign is grade 1 and 2. Therefore, in this paper, the nodules with calculation = 4,
location ¿= 4, dispersion ¿= 4, texture ¡= 2, malignancy ¿= 3 were selected as positive
experimental samples according to the scheme shown in Table 1.

In addition to these four types of common signs related to cancer, normal tissue image
blocks were also selected as negative samples for comparison purposes. Five types of nod-
ule sign images were available in total: non-central calcification, lobulation, spiculation,
and GGO. Some instances of selected samples are shown in Table 2. In the table above,
Sbd, Isd, Cald, Shd, Mgd, Lbd, Spd, and Nond represent the degrees of subtlety, internal
structure, calcification, spherical, margin, lobulation, spiculation, and non-solid texture,
respectively.
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Table 2. Normal tissue, Non-central Calcification, Lobulation, Spiculation
and GGO signs samples

Negative Non-Calcification Lobulation Spiculation GGO

Sbd - - 4.67 5.00 5.00 4.00 4.00 5.00 3.67 3.00
Isd - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cald - - 4.00 4.00 6.00 6.00 6.00 6.00 6.00 6.00
Shd - - 3.33 2.67 4.25 4.00 5.00 5.00 4.33 4.00
Mgd - - 3.67 4.67 4.50 4.00 4.00 1.00 2.67 1.00
Lbd - - 1.67 2.00 4.25 4.00 4.00 1.00 1.67 1.00
Spd - - 1.33 1.33 2.25 4.00 4.00 5.00 1.67 2.00
Nond - - 5.00 4.67 4.75 4.00 5.00 4.00 1.33 1.00

The positive sample images cropping scheme is as follows: the union of the areas marked
by different experts on a lesion is considered a whole region, and the center point of this
region is used as the center for the image block to be cropped. The size of the cropped
blocks is 32 × 32 pixels. In addition, for experimental comparison, negative samples of
32 × 32 pixels are also randomly selected from the normal lung parenchymal region, as
shown in Table 2.

6.2. Experimental setup. To facilitate the comparison of experimental results, nodule
characteristics provided by radiologists were graded according to its appearance. Table
2 illustrates the selected sample selection rules in this paper. The sign image blocks
were increased through rotation and flip operations. A total of 12,000 CT images were
generated, and 5 cross-validation experiments were conducted.

To normalize the intensity of the images and reduce the influence of artifacts on CT
images, the z-value of each image is calculated by subtracting the average pixel intensity
µ of all CT images from each image X and then dividing it by the standard deviation σ
of the pixel intensity of all images.

z =
X − µ

σ
(13)

Sliding window acquisition operations are performed for each CT image with a 32 × 32-
pixel window and step interval of 11 pixels. Accordingly, 2116 image pictures (46 × 46)
can be acquired from each CT. In this experiment, each correct action or classification
yields a reward with a value of r = 1, so the Qtarget for each episode is 2116. For each
state generated from a CT image using a sliding window, the agent has 5 actions to
choose from: non-central calcification, lobulation, spiculation, GGO sign, or negative.
After performing an action, the algorithm will return corresponding reward values based
on the baseline sample (doctor’s diagnosis).

Figure 5 is a paradigm of how the algorithm evaluates the reward of an agent’s ac-
tion, where the LIDC-IDRI database simulates the environment. Figure 5(a) shows the
diagnostic results of TriCaps-RL and the classification result are sent to the CT image.
Figure 5(b) exhibits the comparison between the original annotation of the image blocks
and the diagnostic results of TriCaps-RL. The position of block 3 in image (b) indicates
that a diagnostic result of TriCaps-RL coincides with the doctor’s annotation area.

In Figure 5, the area outside the green square represents normal tissue. The original
category labels of the image blocks from which we extracted are all negative.
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Figure 5. Paradigm of TriCaps-RL’s diagnostic results on LIDC-IDRI.

The algorithm computes the reward for each image block by comparing the discrepancy
between the baseline and the method’s predicted output. If the two are the same, the
reward is 1; otherwise, the reward is 0. As shown in Figure 5(b), for block 3, the diagnostic
result of TriCaps-RL is consistent with the baseline, so the environment rewards 1. The
rewards can also be evaluated by comparing with the radiologist’s diagnosis, when learning
through interaction online with them. In Figure 5(b), the agent considers region 1 and
2 as positive nodules, but it is not consistent with the baseline labels, so the algorithm
returns reward 0.

When comparing the original annotation of the samples with the classification results
of TriCaps-RL, the reward algorithm returns a value according to the following principles:

1) If 2/3 of an image block overlaps with the lesion annotated by the radiologist, its
label given by the radiologist is used as the reference label;

2) If the overlap is less than 2/3, the algorithm’s classification result is considered
correct if the classification result of the algorithm and the radiologist’s annotation are all
positive. Else if the algorithm identifies this image block as negative, it is also considered
to be correct. For the other situations, the results are incorrect.

When training TriCaps-RL, the maximum value (N) of the experience replay memory
pool (D) is set to 3K. 50 small batch samples are extracted from D at a time. For ϵ greedy
strategy, ϵ reduces linearly from 1 to 0.1 in 3000 episodes. Empirically, for EPISODES
in Equation (8), it is set to 22000. In the sign recognition phase, the size of category space
C is 5. Np = 10 individual samples are randomly selected from each category at a time,
for a total of 50 samples (with Np × C = 50), and then 50 sample pairs were composed
for validation.

6.3. Learning process. Figure 6 shows the increasing curve of TriCaps-RL’s validation
accuracy during the learning process.

As can be seen from Figure 6, the accuracy of TriCaps-RL varies greatly until 2600
episodes. The reason for this phenomenon is that the data in the experience memory
pool is not completely updated, so the change of the loss is not stable. After 2600
episodes, the accuracy tends to rise steadily with the accumulation of experience. After
14000 iterations of training, it reaches a plateau and becomes stable. When the value of
episodes exceeds 22000, the accuracy achieves a higher plateau again. This is why the
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Figure 6. Training verification accuracy curve of TriCaps-RL.

value of EPISODES in Equation (9) is set to 22000. After 22000, the loss of the algorithm
gradually transits to the triplet loss function shown in (2).

6.4. Learning process. In order to visualize how the embedding representations changes
with the learning process, the feature embedding representations of five types of test sam-
ples is visualized in three-dimensional space after dimensionality reduction. The graphs
in Figure 7 show the feature distributions of the five categories as the training process
advances. It can be seen that the embedding representations of one kind converge grad-
ually with the increase of the episodes, while the feature embedding representations of
different kinds diverge simultaneously.

Figure 7. The embedding feature representation of five kinds of signs with
the increase of the number of learning episodes.
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6.5. The classification performance TriCaps-RL method.

1) ROC
Figure 8 shows the ROC (Receiver Operating Characteristic) curve of TriCaps-RL’s

classification performance on each category. The AUC of non-central calcification, nega-
tive, lobulated, spiculation, and GGO signs are 0.9193, 0.9072, 0.9009, 0.9004 and 0.8957,
respectively. It can also be seen that the TriCaps-RL method has the highest overall clas-
sification accuracy on non-calcification signs. AUC of lobulation sign, spiculation sign,
and GGO sign are lower than that of non-central calcification and negativity.

Figure 8. ROC curve of TriCaps-RL.

2) Accuracy confusion matrix of TriCaps-RL
In order to further analyze the potential classification error distribution, an accuracy

confusion matrix was made for the five category samples, as shown in Figure 9.

Figure 9. The accuracy confusion matrix for each kind of samples.
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Table 3. CNN network architecture for comparison

Layers Size of the input Size of the kernel Step width

1 32× 32 5 1
2 28× 28 2 MaxPooling
3 14× 14 5 1
4 10× 10 5 1
5 flatten
6 512
7 128
8 5

The numbers on the diagonal of the confusion matrix indicate the recognition accuracy
of the corresponding categories, while the elements on the non-diagonal are the misclas-
sification rate. As can be seen from Figure 9, the non-central calcification signs have the
highest classification accuracy, while the GGO signs have the highest misclassification
rate. Most of the misclassifications occurred among lobulation, spiculation, and GGO
signs. In addition, the majority of misclassified spiculation sign samples were considered
as lobulation signs. By analyzing the visual appearance of the two types of test sam-
ples, it was observed that a significant number of samples from both categories exhibit
remarkably similar

6.6. Performance comparison between TriCaps-RL and DQN.
1) DQN, short for Deep Q Network, is a classical deep reinforcement learning algorithm,is
a classical deep reinforcement learning algorithm. For comparison, a new DQN is estab-
lished in this paper according to the structure shown in Table 3. The training data is the
same as that of the TriCaps-RL, and the final test results are calculated and compared
with TriCaps-RL. The agent of DQN has three convolutions, and the loss function is
shown in Equation (12).

The average classification performance of the two methods is shown in Figure 10.

Figure 10. Performance comparison of TriCaps-RL and DQN.

From Figure 10, it can be observed that the TriCaps-RL is superior to DQN in sen-
sitivity, specificity, and accuracy, showing that the structure of triple capsule network is
reasonable and effective.
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2) In order to perform a finer grained analysis and see the performance differences be-
tween the two methods in different categories, a confusion matrix on accuracy differences
between TriCaps-RL and DQN classification is also constructed, as shown in Figure 11.
The floating points on the diagonal represent the difference between TriCaps-RL and DQN
in the classification accuracy of the corresponding categories, while the floating points on
the non-diagonal represent the difference in classification error rate, showing the error
ratio of each category that is misclassified.

The values on the diagonal represent the difference in accuracy between TriCaps-RL
and DQN for different categories. For elements not in the diagonal, it means the difference
in the classification error rate. As shown in Figure 11, the element values on the diagonal
of the confusion matrix are all positive, which means that the TriCaps-RL algorithm
obtains higher accuracy in each category. The average value of the diagonal number is
0.1047, and the overall classification performance is better than that of the DQN. The
absence of positive values in the non-diagonal values means that TriCaps-RL has a lower
error classification rate than DQN in all categories. 3) Contrast of reconstruction of sign

Figure 11. Confusion matrix of accuracy difference between TriCaps-RL
and DQN.

samples
A comparison is made with other reinforcement learning methods. The four classes

positive samples selected in this paper are viewed as a malignant class, and the nega-
tive samples are used as comparisons. Two classes of classification experiments are also
performed, and the performances are compared with the following methods:

(1) The reinforcement learning method based on a single CapsNet, referred to as
CapsNet-RL, the agent in CapsNet-RL has the same structure as the sub-network in
TriCaps-RL algorithm shown in Figure 5, using the loss function shown in Equation (12).

(2) Silva et al. [13] proposed a method for lung nodule classification based on the
combination of artificial 3D image features and reinforcement learning method.

(3) Ali et al. [14] suggested a deep reinforcement learning method for lung nodule
classification. The input is a group of continuous 512 × 512-pixel CT images on the Z-
axis as a state, and the agent is a CNN network with multilayer convolution and pooling.

(4) Mobiny and Nguyen [10] indicated a lung nodule classification method based on
CapsNet, and improved the algorithm of the original capsule network in two aspects:
a). The algorithm forces all capsules corresponding to a pixel in the PrimaryCaps layer
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Table 4. CNN network architecture for comparison

Methods Sensitivity(%) Specificity(%) Accuracy(%)

Silva et al. [12] - - 81
Ali et al. [13] 58.9 55.3 64.4
Mobiny et al. [9] 89.11 - 91.84
CapsNet-RL 88.75 90.17 90.62
TriCaps-RL 90.63 93.77 92.89

to have the same routing coefficient, which improves the speed of the algorithm three
times. b). In the reconstruction phase, different from the original mask output using
node capsules, unlike using the original mask output of the node capsules, the authors
use PrimaryCaps prediction vector and one hot coding prediction vector as the input for
the deconvolution network.

The sensitivity, specificity, and accuracy of TriCaps-RL and CapsNet-RL are tested on
validation set, and compared with the algorithms of Silva, Ali, and Mobiny. The results
are shown in Table 4.

As can be seen from Table 4, the TriCaps-RL and CapsNet-RL algorithms outperform
the first two algorithms. The performance of TriCaps-RL is significantly better compared
to the reinforcement learning method with a single CapsNet.

To summarize our findings and contributions, let’s proceed to the conclusion of our
study.

7. Conclusion. In this paper, to classify pulmonary nodules more finely, a triplet Cap-
sNet and its reinforcement learning method (TriCaps-RL) are proposed. By combining
CapsNets with the triplet learning strategy, the TriCaps-RL method first achieves good
performance on a small training set, and then uses triple feature representation metrics to
boost its performance again. This makes the intra-class expression of sign samples closer,
the inter-class expression farther, and the classification performance is further improved.
In the first phase, the Q-loss function of a single CapsNet is used to learn a primary action
selection strategy. In the second phase, the loss function of the method is gradually trans-
formed into a triplet loss metric. This shift not only solves the problem that the triplet
network does not easy to converge, but also can obtain better classification performance.

Experimental results show that the TriCaps-RL learning algorithm is superior to the
existing lung nodule classification algorithm. This is the first time CapsNet has been
combined with deep reinforcement learning technology to classify pulmonary nodules.

This method can be applied for clinical diagnosis. Through iterative interaction with
radiologists during CT reading procedure, the performance of the method can be contin-
uously improved, and thereby the current dilemma of doctors having not enough time to
annotate medical samples can be overcome. At the same time, this method can provide
increasingly accurate diagnostic reference and gradually improve the diagnosis efficiency
of the physicians.
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